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- _ - 1 41/24y _
Plin t < uy - t(8) _,o(l + -n—n) ] =6
where 0 1is once again our best estimate of the logarithmic standard .

deviation, and uy is the estimated median log lifetime extrapolated to the
desired operating temperature employing the Arrhenius relation. The
statistical efficiency of the device distribution during accelerated aging is
represented by

n= (L2 + 1y}

The experimental uncertainty increases with the difference between the
accelerated temperature range and the normal operational temperature and is
conveniently expressed by an experimental lever arm, L, which is analogous to
the inaccuracy of a rifle decreasing as the ratio of firing range to barrel
length. The D-factor accounts for the statistical effectiveness of the device
distribution at the accelerated temperatures. Devices that failed at the
middle of the accelerated temperature range are statistically inefficient.

The results of this statistical analysis are applied to several typical
accelerated temperature-aging programs to demonstrate its application.
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I, INTRODUCTION

‘klthough accelerated temperature stressing of semiconductor devices is an
accepted and widely employed technique for assessing the reliability of

1,2 it appears that a statistical error analysis of this

semiconductor devices,
procedure is not available. The purpose of this work is to partially remedy
this deficiency. The goal of this program is easily stated: A number of
devices taken from a distributfion are operated at several elevated
temperatures to induce failure in all devices within a reasonable time.
Assuming general characteristics of the device failure probability density
function (pdf) and its temperature-dependence, we estimate the expected
cumulative failure function (cff) for devices in normal operation. By
estimated cff, we mean our best estimate, based on statistical inference, of
the average probability of a random device (taken from the same distribution

but operated at a normal temperature) failing as a function of time.

Section II contains a brief review of the general mathematical formalism
usually employed in semiconductor reliability discussions.ﬁg?hree failure
pdf's ot particular usefulness to this analysis—-exponentiél; normal, and
lognormal--are discussed. Our particular interest is in highly complex
electronic systems intended for long-life space applications. In this
application and for similar ground-based systems, it is not the expected
failure probability density, at times comparable to the median lifetime (~107
to 108 hr) of the device that is important, but the cff, at times orders of
magnitude less, at times comparable to the desired system useful life (-10‘ to
10S hr). A simplified cost analysis to justify this assertion is included at
the end of Section II. A brief review of accelerated temperature aging is
presented, and the assumptions concerning the general characteristics of the
failure pdf, which are fundamental to this analysis, are emphasized.

This analysis is carried out in several steps, each more difficult than
the preceding. We first consider the case of operating the devices to failure

at a single temperature. On the basis of the experimental observed failure

times and the assumption of a lognormal pdf, we estimate the lifetime
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distribution of the original population from the failed sample distribution.
The maximum—likelihood method, combined with the chi-squares and the Student-t
distributions, is employed to estimate the median lifetime, logarithmic
variance, and their associated distributions, as well as the average

cumulative failure function.

This procedure i{s repeated for a generalized accelerated-temperature-
stressing experiment, and these results are first used to analyze a simple
two-temperature stress test because the physical understanding is not obscured
by the mathematics and also because such a program is statistically very
efficient within the constraints of the accelerated temperature range or
equivalently within the constraint of limited test time. Various other sample
distributions within the elevated temperature range are considered, and {t {is
shown that samples near the center of the accelerated-temperature region
contribute (statistically) inefficiently to the accuracy of the extrapolated
estimates. The final result of this analysis is an estimate of the average -
cumulative failure function of a device operated at the actual operating
temperature. This estimate 1s based on the sample failure distribution of a .
thermally accelerated aging test with no prior knowledge of either the median

lifetime or {ts logarithmic variance assumed.
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II. BACKGROUND ;

The reliability of a given device is conveniently described by its
failure pdf, which, by convention is designated f(x), where x is a random
variable. The differential probability that a randomly chosen device will
fail between x and x + Ax is f(x)Ax. The cff, F(t), is the probability that a
given device will have failed before t and is,

F(t) -[f(x)dx (1

The survival probability is one minus the cff, when one assumes, as is done in
the present analysis, that a device can only be in one of two states, i.e.,
fully operational or failed. The failure rate, A(t), is

£(t)
X(t) = Tl-_:—l‘-‘(t_)-]_ (2)

A given pdf can be characterized by many different parameters, but only
three of these will be employed in this analysis: mean lifetime, median ﬂ
lifetime, and the varfance of the distribution. The mean 1ifetime for a given ’
pdf is designated

T = [tf(t)dt (3)

e e —————— o . ——— - .-
T v .




and represents approximately the average life expectancy of a large number of
devices taken for the distribution under discussion. The variance is a

measure of the "spread” of the lifetimes and is defined as

ol - f (t - D2(t)de (4)

o

In this case, the variance is defined with respect to "linear™ time as the
random variable. Although this is the usual designation, the choice of the
random variable is not unique. With semiconductor devices, it is convenient
to specify the variance with respect to the logarithm of operating time as the
random variable. The median lifetime is similar to the mean lifetime except
that it represents the time at which the cff is equal to 0.5. If a large
sample of devices were operated to failure, the median lifetime or log
lifetime 1s approximately equal to the time at which one-half of the devices
have failed.

The general properties of three failure pdf which are of particular

interest to the present analysis are briefly reviewed.

The exponential failure pdf 1is
f(t) = X exp(=it) (5)

where X ig a constant. For any true pdf, we have

f f(t)dt = 1 (6)
()




The cff assumes a simple form

v F(t) = 1 -~ exp(-At) (7)

= At for At K1 (8)

The failure rate is constant and equal to A. The mean lifetime and its
standard deviation are both equal to the reciprocal of the constant failure

rate.

The normal failure pdf is

f(t) =

1 1/t - uy2
exp[- 5(~——=) (9
0(2")172 2 o] ]

2

where u is the mean lifetime and ¢ the variance. Unlike the exponential

distribution, the median lifetime is equal to the mean lifetime. The cff

t g 1/t - uy2
F(t) = __[ T exp(- H{(E—¥)2r] (10)

e, 3 e S P S IO SN ANt NS 108 o0

cannot be expressed in a closed form and must be evaluated by using a

tabulation of the standard normal distribution
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(a-u)/c
1 1 .2
M@ =7 l exp(- 5 y%)ey (1)

Probability graph paper (e.g., K & E/46 8003) is particularly useful when

working with normal distributions. When the cff is plotted on this graph
paper, a straight line results. Both the median and the mean lifetime occur
at cff = 0.5 ({.e., 50%2) and

o=y -t (12)

16

where t;s 1s the time corresponding to F(t) = 0.16. The normal pdf is
symmetric about p, and approximately 68% of the failures occur within ¢ of the
median lifetime.

Under carefully controlled conditions of elevated temperature and applied
bias, the failure pdf of semiconductor devices is found!+*2 to follow a

lognormal pdf expressed as

ln(t/TM) 2

1
f(t) = exp| - « ———— (13)
to(2w)l72 [ iﬁ g )

In this expression, Ty is the median lifetime, and o is the logarithmic
standard deviation. The lognormal distribution is similar to the normal pdf
except that t + 1n t. 1In fact, if we define




we have

1 1/x = uy2
£(x) -’;;;;;T7f exP[“E 5 )°] (15)

a normal distribution employing not a linear time scale but a logarithmic time
scale. By working in logarithmic time, all the properties of the normal
distribution apply to the lognormal pdf. The time interval [t, t + At]
becomes [x, x + Ax] = [In t, In t + At/t]. The cff is

X

1 1,x - uy2
F(x) L L W exp[- “i'( p ] ] (16)

which, when plotted on probability graph paper using the logarithm of time,
results in a straight line. This straight line crosses the 50% probability at
x = y; the median of the log lifetime distribution. The median lifetime is,

of course,

T, = exp | a7

In a manner similar to a normal distribution, we have approximately

s yu-2x = 1“(-t—— (18)

16




where x;¢ and tj¢ correspond to the value of x and of t where 162 of the
cumulative failure occurs. Approximately 68% of the failure occurs between

x)¢ and xg, (i.e., 20, centered around the median lifetime).

Expressions for the real-time (i.e., linear) mean lifetime and variance
{i.e., Eqs. (3) and (4)] are available> but serve no useful purpose in the
present analysis. In fact, we emphasize that knowledge of the failure pdf
near the mean lifetime is of little value in analyzing the reliability of
complex systems intended for long-1life space applications or other similarly

complex ground-based systems. Of prime importance is the failure rate at

times much less than the average lifetime. In general, with a system
consisting of n components, one desires to know the cff near the 100/n
percentage level. For example, a system consisting of 104 identical
components in series would be expected to have a high probability of failure

at a time when the average device cff is 1074,

If we look at a total system from the viewpoint of cost—-effectiveness, it
is not the failure pdf or cff that one is interested in, but rather the
integral of the cff over the service life. Consider a system with a specified
useful life of tg. Let the loss in some monetary units for the systems not
working in the time interval [t, t + At] be R(t)At. The expected loss from
failure of the ith component is

ts
ALS = J; R(t)Fi(t)dt (19)

where Fi(t) is the cff for the 1th component. The loss rate, of course,
depends on the system—intended employment and reliability. Assuming a
constant "usefulness” throughout the system lifetime, the loss rate is
expected to be proportional to the survival probability of the system 1
excluding the 1th component. Assuming a high survival probability for the

total system, the loss due to the failure of any component is independent of

12




the failure of other components. If the rate of loss R(t) can be reasonably

represented as a constant, i, we estimate
t
- .I's
ALs = R ) Fi(t)dt (20)

or the total estimated loss from all components, assuming EFi(t) <1 for t <

t is the summation of the individual losses and is

s’
tS
L, =RY { F, (t)dt (21)

For an exponential pdf, this takes a particularly simple form assuming
Ait << 1, and we write

L =1g¢?
S

. 1Ay (22)

N

i.e., one simply sums the various failure rates. For a lognormal
distribution, a much more complex situation results because a single lognormal
cff, let alone the sum of lognormal cff's, cannot be integrated to yield a

closed form solution.

Thus far, we have been speaking as 1f we knew the failure pdf
accurately, In practice, we do not know the failure pdf exactly: in fact, in
many cases, we do not even know the functional form of the pdf. Only by
sampling from the distributfon can we estimate the correctness of an assumed
functional form, and only when this is established are we in a position to
estimate the parameters associated with the failure pdf. Knowing the
functional form of the failure pdf, one estimates the expected cff from the
sample distributfon and not the exact cff. In the present analysis, it is
important to distinguish between the parameters that characterize an exact pdf
and the corresponding parameters estimated from sampling.

13
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I1I. ACCELERATED TEMPERATURE TESTING

Because semiconductor components have excellent reliability, it is very
costly to adequately determine the failure pdf under actual operating
conditions. This excessive cost is assoclated with the large sample of
devices that must be operated for long test times to adequately predict the
failure pdf with a reasonable confidence level. Even if the cost of such a
reliability test is not a constraint, the required total test time is usually
a constraint., TIf one desires to predict the reliability of an electronic
system with a desired system life of tg, one must determine the failure rate
at times comparable to tes which for space applications can be ten years or
longer. If the failure pdf is exponential, one can decrease the total test
time by increasing the sample size, since in this special case, it is the
total operating time of the device that establishes the accuracy of predicting '
the failure pdf. When the functional form of the failure pdf is unknown, it

is dangerous to assume that one can trade sample size against test duration.

Because of this consideration, one often resorts to an accelerated
temperature~stress program to estimate the reliability of semiconductor

components. The success of such a program is based on the remarkable

1,2

experimental observations that for a single failure mechanism

1. The failure pdf at a constant temperature and applied electrical
stress is lognormal.

2., The logarithmic variance is independent of temperature.

3. The median failure time follows an Arrhenius dependence expressed as

AE
=T, exp(ETJ (23)

where To and AE, the activation energy, depend on the electrical stress but
not on temperature. A typical accelerated test is schematically shown in

Fig. 1, in which a small sample of devices are operated to complete failure at 1

15 ‘ Wmu-amnuo
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AE = 0.794 eV

2

2

LOG DEVICE LIFETIMES (hr)

A
A
0.96
102 1.01
1.05
1 | I8 L | | |
2.0 2.2 2.4 2.6 2.8 3.0

10007, )

Fig. 1. Arrhenius Presentation of Accelerated Temperature Aging. This
presentation was constructed by picking 10 random lifetimes at three
different tempegatures from a lognormal distribution whose parameters
are p = 1n [107° exp (0.794/kT)] and o = 1.00. The exact median
lifetimes at the various temperatures are listed, as well as the
sample mean lifetime and the logarithmic standard deviation. The
solid line represents the Arrhenius depgndence of the exact median
lifetime, which extrapolates to ™" 10 hr at an operating
temperature of 60°C,

16




three different temperatures. The logarithms (to the base 10) of the
experimentally measured failure time are plotted as a function of the
reciprocal of the absolute "junction" temperature. The scatter in the failure

times at constant junction temperature is the result of the random

distribution of failure times as expressed by their failure pdf. The average
increase in the failure time with increasing reciprocal absolute junction

temperature is because their median lifetime follows an Arrhenius dependence.

If one could take a given device to failure at an accelerated
temperature, restore the device to its original condition, and then repeat the
failure at several different temperatures, the log of the observed failure
times plotted as a function of the reciprocal junction temperature would be

expected to follow a straight line characterized by a specific T, and AE,

Repeating this experiment with other devices from the same uniform pdf would
result in a series of parallel lines, indicating constant failure activation
energy. The vertical shift between these Arrhenius dependences is caused by

the scatter in the pre-exponential factor, T Since the pre-exponential

o.
factor in an Arrhenius dependence 1s relatively temperature insensitive, the

associated logarithmic variance is also temperature insensitive.

Thermally accelerated aging results are typically analyzed as follows:
The failure times observed at a given temperature are plotted on probability
paper to determine whether the sample can reasonably be assumed to have come
from a distribution whose pdf is lognormal. One's confidence in being able to
make such a judgment, of course, increases with the sample size failed at any
given temperature. If the failures at each temperature follow a lognormal
pdf, the logarithmic variance at each accelerated temperature is estimated to
determine whether it is temperature independent. As before, this decision is
greatly aided by a large number of failures at each temperature., The

logarithmic variance usually ranges from 0.5 to 2.0.* A variance of less than

pr
Reasonable care must be exercised in this type of analysis because of rapid
interchange that occurs between naperian base (natural) logarithm and
logarithms to the base 10. The natural logarithm is used for o i{n this work.

17




1.0 is characteristic of a reasonably mature and well-controlled process,
whereas a variance of greater than 2.0 is indicative of an immature process

1 Having established a reasonably low

and is normally rejected out of hand.
variance that is supposedly temperature insensitive, we plot the results as
indicated in Fig. 1 to decide whether the failures can be fitted with a single
activation energy. One's confidence in making such a judgment once again
increases with sample size. If it is decided that a single activation energy
1s justified, constants T, and AE are found that best describe the data. With
these constants, and the logarithmic variance, one can then determine the most

appropriate pdf for any desired operating temperature.

This common procedure has a serious flaw that should be emphasized. The

failure pdf is estimated as

In t -'; 2
N
) ]

1
f(ln t) = :E;;;T7f exP[’ E{"“;“" 24)

where iﬁ and ;2 are the experimenter's best estimate of the extrapolated
median log lifetime and the variance. As such, {t estimates the "median" cff
but not the "average" cff, which can be very different, especially for times
much shorter than the extrapolated median lifetime. The important distinction
between "median” and "average” estimated cff is the primary motivation of this

analysis and is discussed in great detail later.

Our analysis follows the standard treatment given in many books on the
theory of statistics. The authors’' preference is the early edition of Mood
[3]. An excellent bibliography on the theory of statistics is presented in
Ref. [4]). An extensive discussion of the lognormal distributfon has been
provided by Aitchison and Brown (S].

Jordan (6] presented a comprehensive review of the lognormal failure

distribution to the analysis of semiconductor component failure. His analysis
differed from the present work in that he confined his attention to estimating
the statistical error associated with the median lifetime and the logarithmic




variance from a sample of devices all aged to fallure at a constant stress
temperature. Our primary intention is to estimate the error associated with

extrapolating thermally accelerated failures to a lower operating temperature.

An extensive body of literature on the statistical analysis of
accelerated stress testing has been contributed by the General Electric (GE)
Research and Development Center staff., This work does not appear to be widely
discussed within the semiconductor device relifability community as is evident
in that it 18 not referenced in [1]), [2], and [6]. Perhaps the explanation
for this unfortunate oversight {s that the GE group did not employ accelerated
temperature aging of semiconductor device results as a vehicle to illustrate
the application of their statistical analysis. Regardless of what test
results were used, their assumptions (i.e., lognormal pdf/Arrhenius-dependent
median log lifetirr ) are the same as commonly employed in semiconductor device
reliability discuss’ors, and their work 1is, therefore, directly applicable.

The GE an«lysis is conveniently separated into two parts; complete and
censored data. Irn Nelson's early work [7], the analysis of accelerated
temperature aging to complete failure was considered in greater detail than
given in Ref. [8]. His main interest was to estimate the confidence limits at
the extrapolated median lifetime and the associated standard deviation.
However, our main interest is to estimate the probability that a device will
fail at a time much less than the extrapolated median lifetime, a subject
given only cursory consideration by Nelson. This difference in emphasis was
motivated by the final application of the results. We are interested in
highly complex systems where the failure rates at times much less than the
median lifetime are 1mportant//whereas Nelson's interest appears to have been
in systems with few components, and, therefore, failure rates near the median
lifetime are emphasized. Regardless of this difference in emphasis between
the present work and the previous accelerated-aging analysis, there are no
basic differences or conflict because they both follow the standard linear

regression analysis.

In more recent work from the GE group, the analysis of censored data is

considered [9]. An example of censored data in connection with accelerated-




temperature-stress testing would be where only the firsy five failure times at

each temperature would be available in the experiment discussed in connection
with Fig. 1. The analysis of censored data is much more complex than the
problem of complete fallure data. The subject of censored data is usually
described in more advanced probability and statistical books, such as Kendall
and Stuart's second volume [10]. However, the important subject of the

analysis of censored, accelerated-aging data is outside our present objective. i

The correctness of an accelerated-temperature-aging program depends on
systematic and statistical errors. Systematic erroxrs can seriously compromise
the effectiveness of an accelerated stress program. A lower activation energy
failure mechanism invalidates extrapolating the higher temperature failures to
lower temperatures. Although the authors recognized that a thermally
accelerated stress program is very prone to systematic errors, they have
confined this analysis to statistical errors. In this context, the results of
this analysis will provide necessary but, of course, not sufficient criteria
to help determine whether devices from a particular lot, a sample of which was
subjected to thermally accelerated aging, should be installed in a particular
system. The conclusions of this work are valid only under the following

assumptions:
1. The failure pdf is described by single lognormal distribution.
2. The lognormal variance 18 independent of temperature.

3. The median lifetime follows an Arrhenius dependence whose pre-
exponential factor and activation energy are independent of
temperature.

It is recognized that these assumptions apply only to an unbiased, i.e.,
electrically, as opposed to statistically, accelerated stress program and that
the lifetimes should be determined from a blased accelerated-temperature
stress program., The above assumptions are too restrictive in the sense that . !
1f the bias dependence of o, t,, and AE are kept constant during the
accelerated stressing and equal to the values at the operational level, the .

results of this analysis would also apply to a biased accelerated stress

program. The authors have chosen not to include the biased accelerated stress




IR PO TR,

assumption not because they feel it is invalid, but because they wish to
emphasize the importance of carefully examining the implication of electrical 5
bias during accelerated stress testing. Also, the assumption of a single

lognormal pdf rules out the possibility of the existence of a small percentage

) of early failures.!
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IV. STATISTICAL ANALYSIS OF ACCELERATED TEMPERATURE AGING

In a single-temperature test, n devices are opemated until they all fail.
Based on the n different failure times experimentally observed, one desires to
estimate the population distribution from this sample distibution. Establish-
ing the validity of an assumed functional form for the failure pdf is outside
the scope of this analysis and we proceed directly to estimating the lognormal
3o This
will be done by the commonly employed maximum likelihood method. The results

parameters from the experimentally observed failure times, Tys Tys T

of this analysis of a single-failure temperature closely follows the analysis

4

of Jordan” and is included here both for completeness and for its usefulness

in introducing the more complex analysis to follow.

The experimental observed failure times are converted to the correspond-
ing logarithmic X;, X;, X3..., where each of these samples is from a distri-
bution whose median value and variance we wish to estimate. In the maximum-
likelihood method, one designates the deviation of the sample's values from

the median value and forms the summation
VA DX {CHERD (25)

or

In Z= - aln [o(2n )1/2] --—12- Lexg - )2
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(26)

where the summation is performed over the complete sample distribution and is
referred to as the log-likelihood functton. This function contains all the
information available, i.e., the assumed pdf functional form and the
experimental results, and, therefore, represents a reasonable starting point
in any statistical analysis. In the method of maximum likelihood, it is
assumed that reasonable estimators for y and o are the values p and ;; which

maximize the maximum~likelihood function or, more conveniently, the log-

. 11kelihood function.




Equating to zero the derivatives of the log-likelihood function with

respect to both y and ¢ provides the desired point estimators, which are
wo=17x 27
n i

and

=2 1 —\2

0" =~ T(xy - W) (28)
The estimator for the median value is unbiased; 32 is negatively biased but
consistent, i.e., consistent in that in the limit of large sample size
o * 0. The best estimator of ¢ is, of course,
2

ol = L _Tx, -

n-1 (29)

If we know o exactly, we can use Eq. (27) and the self-reproductive

property of normal populations to estimate the distribution of the median

value as
- 1 1 u’ _ E—Z
f(u ) = ——73 exP["i( 5 ) ] (30)
cM(Zn) M
where
2
2 o
OM = 'n— (31)

and is commonly referred to as the standard deviation of the mean. This
equation expresses the simple truth that the error in the estimated median
value follows a normal distribution whose variance decreases linearly with
sample size. If a large number of workers were to repeat this experiment,
their composite results for u would follow the above expression except that
their median u would be nearly equal to the exact u because of the large total
sample size involved. The variance in the reported values of u from all these

workers would be nearly equal to the variance expressed in Eq. (31).
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The confidence in one's ability to predict o from the sample distribution

can be estimated by employing the well-known chi-square pdf. For a normal

distribution, the random variable

X 2
g

(32)

has the chi-square distribution with n-1 degrees of freedom. The probability

that a randomly chosen value of xz is within some interval (a,b) is

b
Pla < :—2 [, =% < b} = L £xE_axc_) (33)
or
-2 ~ 2
P(P%-<oz<§‘i) =35 (34)

where § can be found from cumulative chi-square distribution tables once the

desired confidence interval is specified.

Knowing neither u nor o, one can determine the expected uncartainty in
u by employing the Student-t distribution. Most standard rexvs on s*atistical
analysis prove that 1f x is a normally distributed random variable with mean
u and variance 02, if xz has a chi-square pdf with k degrees of freedom, and

if x and xz are independently distributed, the function

(x - u)lo .
(]2 (35)

tk

*Our reproducing the complex derivation of the chi~square pdf, or of the
Student~t pdf to be shortly introduced, serves little purpose in our primary
goal. We desire only to point out the existence and usefulness of these
special dlstributignz and refer working reliability engineers to standard
text on statistics”*” for a more comprehensive discussion.
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has the Student-t distribution with k degrees of freedom. We have previously
shown that u, i.e., Eq. (30), is the expectation value of u and, therefore the

random variable y - y has a zero mean and variance 02 . Also, since ﬂszldz

M
has been indicated to have a X2 distribution of (n - 1) degrees of freedom and
is independently distributed from u -~ E}a
(u = w)/oy

[n—o‘-zl(n - 1)02]1/2

has the Student-t distribution with (n - 1) degrees of freedom. We can write

the confidence level associated with the median value as

(u = W)/o,
P{-t(s)n.l et [nc /(n - 1)02]17- en .
or rearranging terms .
_ 12
Plu <y - t(8) [n(r —) z(x ] } =6 (38)

where the confidence coefficient § can be determined from tables of the
cumulative Student-t distribution.

Returning once again to the situation where we know 02 exactly but not
u; our best estimate as to the failure pdf of the n + 1 device taken from the

uniform distribution under discussion is

-2
£(x) = exp{- (=X (39) )
———7'-(2” -( . —) }
where
o2 = o?[1 41} (40)
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represents the summation of the intrinsic random variation 02 and qa.

Employing the Student-t distribution, we can estimate the fallure pdf of the

n + 1 device by considering

(x —;)/ou

the1 ™ 2,172

) (41)
[ne“/(n - 1)o

Since the random variable x - y is normally distributed with zero mean and
variance oi and tiEZ/o2 has a chi-square distribution with n - 1 degrees of
freedom, this expression has the Student-t dependence. We can estimate the

probability of the n + 1 device having a lifetime shorter than some specified

time by

(-£(6) (x -E)/ou s )
Pi~t S »>»t = = 2
ool (no2/(n - 1)a°]'/2
which on being rearranged gives
- _ 1/20,
p{1mn+l <y t(a)n_1(1 + n) o} =8 (43)

The statistics of thermally accelerated aging results will now be

analyzed. For this analysis, it is convenient to rewrite the failure pdf as

\

2
X - lnTo - AEZ\

1
£(x) = ———— exp]{- ] (44)
0(2“)1/2 2 o /
where the Arrhenius relation has been reformulated as Y
1
w = Int  + AEZ (45) 3




The median log lifetime is a linear function of the variable (kT)'l, and the
answer to our immediate problem is provided by the well-developed simple
linear normal regression technique. Having provided the formalism in the pre-

ceding.discussion, we may rapidly present the conclusions of this analysis.

From Eq. (44), the log-likelihood function is

/2y _ L

In¥= -n[ Ino(2n) 5

I[x4-1nt_ - mz:zi]2 (46)

20
where the couple (xi,zi) represents the experimental log lifetime X4, observed
when the device is operated at Zi. The summation is, of course, over all
devices that are introduced into the accelerated test program. In keeping
with our primary objective, we are interested in estimating the lifetime of
the n + 1 device operated at a normal temperature Tn from the results of an
accelerated stress program. Determining the value of o, lnto, and AE, which

maximizes the log likelihood function, yields the estimators

Ix-%0@, - D)

AE = — (47)
Z(Zi-z)
Int = X - AE Z (48)
=2 1lv,e _mm—— w2
g Yy Z(xi - Int - AEZ,) (49)
where
X =27x (50)
n i
and
T=17z (51)
n i
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Summations (47) through (51) are done over all experimentally observed n

failures.*

Assuming we know 0 exactly before the start of this experiment, the
estimated distribution of median log lifetime {is

L4 - 1 _ l ”» _ — _ — 2
f(].lN) ———17-2- exp{ —2'(l.IN ln'ro AEZN) } (52)
o,(2x) 20 .
M M
where
2 - 1 2
2 2 Iy 2zNz+(;zzi)
Oy = O — ] (53)
1(z,-2)
i
The estimated pdf of the n + 1 device at Zy is
£(X) --————l—T75 exp [~ —-!--E-(XN = lnt - KEiN)Z] (54)
c (2n) 20
u u
where
2 _ 2 2
o, =9 + L (55)

The above variances can be much larger than the corresponding quantity given
in Eqs. (31) and (40) when Zy is far outside the accelerated temperature

range.

An accelerated temperature-stress experiment is not performed at random
temperatures, but usually at several specially selected temperatures.

Operating at several elevated temperatures is not only less costly, but it

*For a normal pdf, the least~squares method yields identical results.
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offers the important advantage of allowing one to evaluate the temperature-

independence of the variance.

We will now consider a few special sample

distributions.

Perhaps, the simplest sample distribution is a two~temperature
accelerated test with devices equally distributed between the two
temperatures.

Designating the high- and low-stress conditions as Zy and Z;,

we rewrite Eqs. (47), (48), (49), (53), and (55) as

t“

. " 02[1 +-%(L2 + 1))

(56)

(57)

(58)

(59)

(60)

where X, and Xy are the average log lifetimes at the low and high tempera-

In these equations, L represents an effective experimental lever given

(61)

(62)




-

and accounts for the increased uncertainity as one moves away from the accel-

erated temperature range. Note that for L = o the variances, 02 and ai ,are

M
equal to their values in the one-temperature situation. The analogy between
this experimental lever arm and a similar relation for the dependence of the

accuracy of a rifle on the ratio of firing range to barrel length is obvious.

The question naturally arises if an equal distribution of devices between
the two temperatures is statistically the most effective arrangement. Exam-

ination of the above variances shows them to be minimized for the sample

distribution
n = |Aln (63)
B~ TAT + IBT
and, of course,
n, =0 -y (64)
where
A=3(1-1) (65)
B =5(1 +1) (66)
The minimized varlances are
2 02 2
oy = zaCI1 ~ LI + [t + LD (67)
- ::_2 12 (L> 1) (68)
and
o = o*[1+1 12 (L>1) (69)
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From a practical engineering viewpoint, this minimization is of little value
since the effective lever arm is typically L = 6.

Another typical sample distribution is a three-temperature test in which

an equal number of components, i.e., n/3, are failed at Zy, Zy, and Zp. Our

estimated parameters are now

AE = ———r (70)
2y %y
W, - 3® + X+ R - T an
2 _o%3 2
oy =G L+ 1) (72)
o: = a2[1 + ‘11(-35 L+ 1)] (73)

The devices failed at the middle temperature cannot be used to estimate the
activation energy. Consequently, for typical experimental lever arms, the
middle~temperature failures contribute little to the statistical accuracy of
the extrapolated median lifetime, but does, of course, contribute to

estimating o as indicated by Eq. (49).

A uniform distribution is of interest since it approximates a situation
in which devices are stressed at many, e.g., ten equally space points along

the Z axis. The variance in this case is

2. -"—2- (31.2 +1) | (74) - :
v n #
with a related expression for ai. Statistically, two-thirds of the devices ;

are effectively being wasted relative to estimating w. For any symmetric

sample distribution about Zy, the variance can be written as
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M

2 5
-:—(DL +1) : (75)

where the D-function is determined by the relative sample distribution
throughout the accelerated temperature range. The D-quantity can be thought
of as measuring how effectively the samples are distributed. The statistical
inefficiency, of course, increases as the devices are located near the center-
of-mass of the sample. It is convenient to define the statistical efficiency

of an accelerated temperature~stress test as
na= (o2 + 17! (76)

The statistical efficiency increases as both L and D are reduced.

The chi-square pdf can be employed to estimate the uncertainty in the
estimated population variance. This analysis follows the previous one

presented for the one-temperature case except that now

2

1 T _ Ty 32
Xa-2 ¥ 3 1(x, -Int_ - 3Ez,) an

where the chi-square distribution now has n - 2 degrees of freedom. An
additional degree of freedom is lost, since at least two experimental points
at different temperatures are needed to estimate ln'ro and AE. The confidence

level is written

2 2 2
p{“% <o < :—"-} -ff(xn_z)dxn_z (78)

In evaluating the tempér&t;te-sensitivity of 02, one should employ not this
equation, but Eq. (33), i.e., the confidence level at each of the various

accelerated temperatures.
We will now repeat the procedure previously discussed and apply the

Student-t distribution to determine the error associated with E& and Tn+1
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from accelerated stress results with no a priori knowledge of u or o. The
quantity

(uy = EN)/GM (79
t -
n-2 [&gzl(n - 2)o ]112

has a Student-t distribution, since Uy -'ﬁ& has zero mean and variance 0:,
and 652/02 is chi-square distributed with (n ~ 2) degrees of freedom.> We,
therefore, can estimate the probability that My will be lower than any

particular value as

oo
P{"N < i& - t(G)n-Z(n f 2)1/2 OM} =6 (80)

where o and o) are defined in Eqs. (49) and (53). Since Oy is proportional to

o, the confidence limits for uy can be determined. Transforming this

expression into experimental measured parameters, we have

P{uN < lm'o +'ZE2N - t(G)n_z(;/nn)I/z} = § (81)
where
of = —15 I(x, - Tat, - BEz)? (82)

is our unbiased estimator of ¢ from accelerated temperature aging.

Our primary interest is, of course, in the probability that a randomly
selected device operating at normal temperatures will have a lifetime lower
than a preselected value. This probability can be found by considering the
relation

-
it iiia e e




[1nt
t = (83)
[ﬁ?zl(n - 2)0]1/2

a1 " T-n'ro - AEZN]/OU

which can be shown to have a Student-t distribution employing the same logic

as invoked several times before. We write the desired probability as

E et - 1 11/2
P{ln‘rn+l < lnt_ + AEZ, t(6)n_20[1 +-;E] } =6 (84)
where ¢ is defined in Eq. (82). This relation expresses the probability that
Tn+l will be lower than any preselected value in terms of known experimental

results. It represents the estimated average cff that should be employed in

estimating the system loss to be associated with this device and as such

represents completion of our formal statistical analysis.
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V. APPLICATION AND SUMMARY

To demonstrate the application of the preceding analysis, we could take
thermally accelerated aging results, such as those illustrated in Fig. 1, and
doggedly estimate the various probabilities of interest. We have elected not
to proceed in this sterile mode. Instead, we propose considering a very arti-
ficial, but instructive, situation. This contrived example has been selected
not only because it illustrates the employment and usefulness of the preceding
analysis, but also because it clearly shows potential pitfalls that one can

encounter in applying accelerated aging results.

Consider the problem of selecting a semiconductor component for a complex
space system. Assume that the system analyst has determined that the required
device should have an average failure rate of less than 10 FITs, i.e., 10
failures/lO9 hr, over the system useful 1life of 10° hr when the device is
operated at a junction temperature of 50°C or less. We can select the device
from six different lots, all of which have been through an accelerated
temperature-stress programe. Although the thermal aging conditions for each of
these lots were different (these contrived conditions are listed in Table 1),
they all yielded the same extrapolated (50°C) median lifetime and logarithmic
variance. In particular, let us assume that the extrapolated median lifetimes
are 10’ hr and that the sample distribution logarithmic standard

deviations, ¢ = 1.0.

Based on the preceding analysis, the results of an accelerated test pro-
gram extrapolated to a given temperature must be characterized by four para-
meters -—— not only JN and ;, but also the total number of devices in the
accelerated test and the statistical efficiency of the accelerated stress pro-
gram n. We have listed the statistical efficiency of each experiment in Table
1 with the parameter L which will prove useful in discussing this
situation. Both of these parameters are dependent on the device operational

junction temperature, and the values listed in Table 2 are for Ty = 50°c.

The probabilities that the lifetime of the device during normal operation

will be less than various preselected times, T°, has been calculated employing
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Table 1. Contrived Accelerated Temperature-Aging Experiments

Extrapolated
Lot TH/“H TL/“L n ou/o
1 250/16 150/16 5.27 x 1072 1.26
2 250/16 200/16 8.64 x 1073 2.15
3 250/8 150/8 5.27 x 102 1.47
4 250/8 200/8 8.64 x 1073 2.87
5 250/4 150/4 5.27 x 1072 1.84
6 250/4 200/4 8.64 x 1073 3.93

The parameters cu/o and n are calculated with application of Eqs. (60) and (76).
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} Table 2. Analysis of Contrived Thermal Aging Tests !
]
U . 1°(hr)

Lot & = 0.25 § = 0.10 § = 0.01 § = 0.005 & = 0.0005 ;

0 5.10 x 108 2,77 x 108 9.77 x 10°  7.61 x 105  3.72 x 10°

1 4,23 x 10 1.92 x 105 4.52 x 105  3.13 x 10° 1.0l x 10°

2 2.30 x 104 5.98 x 10°  5.08 x 10®  2.71 x 10®  3.94 x 103

3 3.62 x 105 1.38 x 105  2.11 x 10°  1.25 x 105  2.27 x 104

4 1.37 x 10® 2,11 x 105 5,36 x 103 1.95 x 10> 6.91 x 10!

5 2.67 x 108  7.06 x 105  3.08 x 10®  1.09 x 10* 1.73 x 102

6 5.95 x 10°  3.49 x 10°  4.32 x 10! 4,71 6.75 x 1074

The t° is the estimated device lifetime at T; = 50°C at a confidence level
(1 - §) (or, equivalently, 6 failure probabilities at 50% confidence level).

m—
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Eq. (84), remembering iﬁ - TE?; +‘Z§ZN , and are listed in Table 2. Also
included in Table 2 (as lot zero) are the estimated failure probabilities for
the case where ;N- In (107 hr) and ; = 1.00 are the exact parameters of a
lognormal failure pdf. For the reader's convenience, we display the estimated
average cff for three accelerated aging tests as well as the cff for lot zero
in Fig. 2.

The estimated cff of lot zero can, of course, be found directly from Eq.
(16) since we are assuming Fhat we know Ty and ¢ exactly. One can calculate
the cff equally as well from Eq. (84) by allowing the sample size to become
sufficiently large. With a large sample size

t:(ﬁ)n_2 + t(8)
and
1
(1 +ﬁ) + 1

Under the condition of a large sample size, the confidence coefficient § ap-

proaches the standard normal cff.

It is readily apparent that if My = 1n(107 hr) and ; = 1.0 adequately
characterized the failure pdf, the failure rate at times less than the
specified useful system life of 10° hr would be insignificant. Using the
sample distributions ;N and ; as the exact Ky and ¢ is perhaps the most
serious pitfall to be associated with applying accelerated temperature-aging
results. For times less than ;N’ the analysis of the six contrived
accelerated-aging programs indicates an average probability of failure much
higher than one estimates using ;N and ; as exact failure parameters, i.e.,
the lot zero case.
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Fig. 2. Estimated Average Failure Probability as Function of Operating
Time at 50°C Inferred From Accelerated Aging. The curve
deiignated 0 is the cff of a lognormal pdf with parameters Ty =
10’ hr and o = 1,00 (see text).
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The difference between the analysis of lot zero and Eq. (84) is

fundamental to our present interest. When one uses EN and 0 alone to

calculate the cff, one is estimating the median probability of failure at the

various operational times and not the average probability of failure as Eq.

(84) does. At 107 hr, the median and average failure probabilities are equal,

but they diverge as one goes to either shorter or longer times. The

divergence 1s a direct result of the uncertainties in the estimates

of y and 0 having a greater effect at both short and long times. The

probability curves are symmetric about ;N’ but since we are not interested in

lifetime greater than EN’ only the lower portions are illustrated in Fig. 2.

For lots 1 and 2, the sample sizes are sufficiently large that for § >

0.005, the error in the estimated cff is caused by the uncertainity in p and

not 0. In other words,

€(8)y, ~ t(8),3 & > 0.005

and the cffs can be approximately represented by a lognormal cff with parame-

1/2

ter y, = 1n (107 hr) and ¢ =o(l + 1/an) ', Although both lots 1 and 2 have
N

failed the same number of devices, the uncertainity in the second lot at low

values of the cff is much greater because of its longer lever arm or, equiva-

lently, its lower statistical efficiency.

When the sample size is reduced by one-half (lots 3 and 4), the uncertain-~

ties in both ;N and o are almost equally important for 0.0005 < 6§ < 0.0l.

Above § = 0,01, the uncertainty in y dominates, whereas below 0.0005, the

uncertainty in o dominates. The exact region between where the uncertainty

in u or o dominates is, of course, dependent on the relative magnitudes

of t(G)n_2 and cu/o as can be clearly seen by comparing the various lots.

Both the sample size and the statistical efficiency of lots 5 and 6 are

8o low that the uncertainty in their failure rates at time less than 10° hr

makes them useless for our assumed requirement.
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considered as meeting the requirement of less than an average of 10 FITs over
a useful system lifetime of 10° hr.

As a general rule, 1t appears more appropriate to assume that the esti-
mated average failure probability follows an exponential failure pdf with
A = exp(-uy) than that u and o are the exact value of p and 0. Extending
this suggestion to many different components, i.e., components from different
accelerated aging experiments, should further increase the accuracy of this
approximation. Considering that it 1s not difficult to calculate an effective
failure rate with the foregoing analysis when the accelerated aging conditions
are adequately characterized, the assumption of an exponential pdf should be

congidered only when the thermal stress results are not properly characterized.

The results of this analysis are best summarized by emphasizing that any
accelerated temperature-aging test should be characterized by more parameters
than just the logarithmic variance of the failed sample distribution and the
extrapolated median lifetime (or, since all users will not operate at the same
junction temperature, ?; and AE). This is especially important when one
wigshes to estimate the failure rate at times much different than the extrapolated
median lifetime. To properly estimate the average probability of failure at
times much less than ;N’ the total number of devices in the accelerated
temperature—-aging program should be provided as well as each failure tempera-
ture. These parameters are then used to calculate the probability of failures
at low-level cff, and an estimated average failure rate is calculated. If the
average failure cff meets the system requirements, one is justified in con-
cluding that the statistical requirement has been fulfilled and one should
then turn to the consideration of potential systematic errors in applying
accelerated temperature-aging results -- a subject beyond our limited

objective.
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cff
F(x)
f(x)

1n

log

A(e)

ABBREVIATIONS AND SYMBOLS

Cumulative failure function

Cumulative failure function (cff) of random variable (x)

Failure probability density function (pdf) of random variable (x)
Boltzmann's constant

(Zy = 2 /(Zy, - Zyy)

Natural logarithm

Logarithm to base 10

Total sample size in accelerated temperature stress (all failed)
Sample size at Tg (all failed)

Probability density function

Absolute " junction” temperature

Highest accelerated temperature

Lowest accelerated temperature

Normal, i.e., desired, operational temperature

Time, random variable

Student-t distribution with k degrees of freedom associated with
confidence coefficient §

in L

1n t, random variable

ety

(Z“ + ZL)/Z

Activation energy of Arrhenius-dependent failure mechanism

Confidence coefficient

Device failure rate
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B Median lifetime/log lifetime )

;1 Mean of sample distribution at Ty

;N Mean of sample distribution extrapolated to Ty

02 Variance/log variance é

;2 Estimator of 02 N

H

Q ;2 Unbiased estimator of 02
: 11 “"Experimental” failure time of device

T Pre-exponential factor of Arrhenius-dependent failure mechanism

hradte o . an SRR

Chi-squares distribution with k degrees of freedom




LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimentsl snd theoreticai {nvestigstions nacesssry for the evaluation and
application of scientific advances to nev military concepts and systems. Ver-
satilicy and flexibility have been developed to & high degres by the laborato-
ry personnel in desling with the many problems encountered in the Natfon's
rapidly developing space systems. Expertise in the latest scientific develop-
ments is vital to the accomplishment of tasks related to thess problems. The
laboratories that contribute to this research are:

Aerophysice Laboratory: Aerodynsaics; fluid dynsmice; plasmadynamicse;
chemical kinetics; engineering machenice; flight dynsmics; heat transfer;

high~power gas lasers, continuous snd pulsed, IR, visible, UV; laser physics;
laser resonator optice; laser effects and counterusssures.

:  Atmospheric resctions amd optical beck-
s atwospheric transmission; therms] and state-
specific reaction rates in rocket plumes; chemical thermodynamics and propul-
sion chemistry; laser isotope separstion; chamietry and physics of particles;
space environmmental and contamination effects omn spacecraft materisle; lubrice-
tion; surface chemistry of insulators and comductors; cathede msterials; sen-
sor satarials and sensor optics; applied lasar spectroscopy; stomic frequescy
standards; pollution and toxic materials wmomitoring.

Electronics Research Laboratory: Electromsgnetic theory and propagation
phenomena; microwave and semiconductor devices end integrated circuits; qusn-
tus electronics, 1 , and el ptics; communication sciences, aspplied
electronics, superconducting and electronic device physics; willimster-wave
and far-infrared technology.

Materials Sciences Laborstory: Developmsut of new msterisls; composite
wnateriale; graphite and ceramics; polymeric meterials; wespons effects and
hardaned msteriale; materials for electronic devices; dimensionally stabdbls

materials; chemical and structural amalysas; strese corrosiom; fatigus of
matsls.

S; Sciences Laborstory: Atmospheric end ionospheric physics, redia-~
tion Trom the atmosphere, density snd composition of the atmosphers, aurorse
and airglow; magnetospheric physics, cosmic rays, gensration end propagation
of plasms waves in the magustosphere; solar physice, x-rey astromomy; the effects
of muclear explosions, maguetic storws, and solar activity om the estth'e
atmosphers, ionosphere, and magnetosphers; the effects of optical, electromeg~ .
netic, and perticulate radiations in space on Space systems.
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